XDMF Model and Format: Difference between revisions
No edit summary |
No edit summary |
||
Line 459: | Line 459: | ||
'''0.0 1.0 2.0''' | '''0.0 1.0 2.0''' | ||
'''</DataItem>''' | '''</DataItem>''' | ||
'''<Grid Name="Two Quads>''' | '''<Grid Name="Two Quads">''' | ||
'''<Topology Type="Quadrilateral" NumberOfElements="2" >''' | '''<Topology Type="Quadrilateral" NumberOfElements="2" >''' | ||
'''<DataItem Format="XML" ''' | '''<DataItem Format="XML" ''' |
Revision as of 07:17, 26 March 2016
Xdmf2 Model and Format Archive
The need for a standardized method to exchange scientific data between High Performance Computing codes and tools lead to the development of the eXtensible Data Model and Format (XDMF) . Uses for XDMF range from a standard format used by HPC codes to take advantage of widely used visualization programs like ParaView and EnSight, to a mechanism for performing coupled calculations using multiple, previously stand alone codes.
XDMF categorizes data by two main attributes; size and function. Data can be Light (typically less than about a thousand values) or Heavy (megabytes, terabytes, etc.). In addition to raw values, data can refer to Format (rank and dimensions of an array) or Model (how that data is to be used. i.e. XYZ coordinates vs. Vector components).
XDMF uses XML to store Light data and to describe the data Model. Either HDF5 or binary files can be used to store Heavy data. The data Format is stored redundantly in both XML and HDF5. This allows tools to parse XML to determine the resources that will be required to access the Heavy data. For the binary Heavy data option, the xml must list a filename where the binary data is stored.
While not required, a C++ API is provided to read and write XDMF data. This API has also been wrapped so it is available from popular languages like Python, Tcl, and Java. The API is not necessary in order to produce or consume XDMF data. Currently several HPC codes that already produced HDF5 data, use native text output to produce the XML necessary for valid XDMF.
XML
The eXtensible Markup Language (XML) format is widely used for many purposes and is well documented at many sites. There are numerous open source parsers available for XML. The XDMF API takes advantage of the libxml2 parser to provide the necessary functionality. Without going into too much detail, XDMF views XML as a "personalized HTML" with some special rules. It it case sensitive and is made of three major components : elements, entities, and processing information. In XDMF we're primarily concerned with the elements. These elements follow the basic form :
<ElementTag AttributeName="AttributeValue" AttributeName="AttributeValue" ... > CData </ElementTag>
Each element begins with a <tag> and ends with a </tag>. Optionally there can be several "Name=Value" pairs which convey additional information. Between the <tag> and the </tag> there can be other <tag></tag> pairs and/or character data (CData). CData is typically where the values are stored; like the actual text in an HTML document. The XML parser in the XDMF API parses the XML file and builds a tree structure in memory to describe its contents. This tree can be queried, modified, and then "serialized" back into XML.
Comments in XML start with a "<!--" and end with a "-->". So <!--This is a Comment -->.
XML is said to be "well formed" if it is syntactically correct. That means all of the quotes match, all elements have end elements, etc. XML is said to be "valid" if it conforms to the Schema or DTD defined at the head of the document. For example, the schema might specify that element type A can contain element B but not element C. Verifying that the provided XML is well formed and/or valid are functions typically performed by the XML parser. Additionally XDMF takes advantage of two major extensions to XML :
XInclude
As opposed to entity references in XML (see below), XInclude allows for the inclusion of files that are not well formed XML. This means that with XInclude the included file could be well formed XML or perhaps a flat text file of values. The syntax looks like this :
<Xdmf Version="2.0" xmlns:xi="[http://www.w3.org/2001/XInclude]"> <xi:include href="Example3.xmf"/> </Xdmf>
the xmlns:xi establishes a namespace xi. Then anywhere within the Xdmf element, xi:include will pull in the URL.
XPath
This allows for elements in the XML document and the API to reference specific elements in a document. For example :
The first Grid in the first Domain
/Xdmf/Domain/Grid
The tenth Grid .... XPath is one based.
/Xdmf/Domain/Grid[10]
The first grid with an attribute Name which has a value of "Copper Plate"
/Xdmf/Domain/Grid[@Name="Copper Plate"]
All valid XDMF must appear between the <Xdmf> and the </Xdmf> tags. So a minimal (empty) XDMF XML file would be :
<?xml version="1.0" ?> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []> <Xdmf Version="2.0"> </Xdmf>
While there exists an Xdmf DTD and a Schema they are only necessary for validating parsers. For performance reasons, validation is typically disabled.
Entities
In addition to Xinclude and XPath, which allow for references to data outside the actual XMDF, XML's basic substitution mechanism of entities can be used to render the XDMF document more readable. For instance, once an entity alias has been defined in the header via
<?xml version="1.0" ?> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" [ <!ENTITY cellDimsZYX "45 30 120"> ]>
the text in double quotes is substituted for the entity reference &cellDimsZXY; (note the trailing semicolon) whenever the parser encounters the latter in the remaining part of the document.
XDMF Elements
The organization of XDMF begins with the Xdmf element. So that parsers can distinguish from previous versions of XDMF, there exists a Version attribute (currently at 2.0). Any element in XDMF can have a Name attribute or have a Reference attribute. The Name attribute becomes important for grids while the Reference attribute is used to take advantage of the XPath facility (more detail on this later). Xdmf elements contain one or more Domain elements (computational domain). There is seldom motivation to have more than one Domain.
A Domain can have one or more Grid elements. Each Grid contains a Topology, Geometry, and zero or more Attribute elements. Topology specifies the connectivity of the grid while Geometry specifies the location of the grid nodes. Attribute elements are used to specify values such as scalars and vectors that are located at the node, edge, face, cell center, or grid center.
To specify actual values for connectivity, geometry, or attributes, XDMF defines a DataItem element. A DataItem can provide the actual values or provide the physical storage (which is typically an HDF5 file).
XdmfItem
There are six different types of DataItems :
- Uniform - this is the default. A single array of values.
- Collection - a one dimension array of DataItems
- Tree - a hierarchical structure of DataItems
- HyperSlab - contains two data items. The first selects the start, stride and count indexes of the second DataItem.
- Coordinates - contains two DataItems. The first selects the parametric coordinates of the second DataItem.
- Function - calculates an expression.
Uniform
The simplest type is Uniform that specifies a single array. As with all XDMF elements, there are reasonable defaults wherever possible. So the simplest DataItem would be :
<DataItem Dimensions="3"> 1.0 2.0 3.0 </DataItem>
Since no ItemType has been specified, Uniform has been assumed. The default Format is XML and the default NumberType is a 32 bit floating point value. So the fully qualified DataItem for the same data would be :
<DataItem ItemType="Uniform" Format="XML" NumberType="Float" Precision="4" Rank="1" Dimensions="3"> 1.0 2.0 3.0 </DataItem>
Since it is only practical to store a small amount of data values in the XML, production codes typically write their data to HDF5 and specify the location in XML. HDF5 is a hierarchical, self describing data format. So an application can open an HDF5 file without any prior knowledge of the data and determine the dimensions and number type of all the arrays stored in the file. XDMF requires that this information also be stored redundantly in the XML so that applications need not have access to the actual heavy data in order to determine storage requirements.
For example, suppose an application stored a three dimensional array of pressure values at each iteration into an HDF5 file. The XML might be :
<DataItem ItemType="Uniform" Format="HDF" NumberType="Float" Precision="8" Dimensions="64 128 256"> OutputData.h5:/Results/Iteration 100/Part 2/Pressure </DataItem>
Alternatively, an application may store its data in binary files. In this case the XML might be.
<DataItem ItemType="Uniform" Format="Binary" Dimensions="64 128 256"> PressureFile.bin </DataItem>
Dimensions are specified with the slowest varying dimension first (i.e. KJI order). The HDF filename can be fully qualified, if it is not it is assumed to be located in the current directory or the same directory as the XML file.
Collection and Tree
Collections are Trees with only a single level. This is such a frequent occurrence that it was decided to make a Collection a separate type in case the application can optimize access. Collections and Trees have DataItem elements as children. The leaf nodes are Uniform DataItem elements :
<DataItem Name="Tree Example" ItemType="Tree"> <DataItem ItemType="Tree"> <DataItem Name="Collection 1" ItemType="Collection"> <DataItem Dimensions="3"> 1.0 2.0 3.0 </DataItem> <DataItem Dimensions="4"> 4 5 6 7 </DataItem> </DataItem> </DataItem> <DataItem Name="Collection 2" ItemType="Collection"> <DataItem Dimensions="3"> 7 8 9 </DataItem> <DataItem Dimensions="4"> 10 11 12 13 </DataItem> </DataItem> <DataItem ItemType="Uniform" Format="HDF" NumberType="Float" Precision="8" Dimensions="64 128 256"> OutputData.h5:/Results/Iteration 100/Part 2/Pressure </DataItem> </DataItem>
This DataItem is a tree with three children. The first child is another tree that contains a collection of two uniform DataItem elements. The second child is a collection with two uniform DataItem elements. The third child is a uniform DataItem.
HyperSlab and Coordinate
A HyperSlab specifies a subset of some other DataItem. The slab is specified by giving the start, stride, and count of the values in each of the target DataItem dimensions. For example, given a dataset MyData.h5:/XYZ that is 100x200x300x3, we could describe a region starting at [0,0,0,0], ending at [50, 100, 150, 2] that includes every other plane of data with the HyperSlab DataItem
<DataItem ItemType="HyperSlab" Dimensions="25 50 75 3" Type="HyperSlab"> <DataItem Dimensions="3 4" Format="XML"> 0 0 0 0 2 2 2 1 25 50 75 3 </DataItem> <DataItem Name="Points" Dimensions="100 200 300 3" Format="HDF"> MyData.h5:/XYZ </DataItem> </DataItem>
Notice that the first DataItem specified Start, Stride and Count for each dimension of the second DataItem. Suppose, instead that we only wish to specify the first Y data value from the DataItem and the last X value. This can be accomplished by providing the parametric coordinates of the desired values and using the Coordinates ItemType.
<DataItem ItemType="HyperSlab" Dimensions="2" Type="HyperSlab"> <DataItem Dimensions="2 4" Format="XML"> 0 0 0 1 99 199 299 0 </DataItem> <DataItem Name="Points" Dimensions="100 200 300 3" Format="HDF"> MyData.h5:/XYZ </DataItem> </DataItem>
The first Y value is index 1 of item 0,0,0 while the last X value is index 0 of item 99, 199, 299. The dimensionality of the specified coordinates must match that of the target DataItem.
Function
Function ItemType specifies some operation on the children DataItem elements. The elements are referenced by $X where X is the zero based index of the child. For example, the following DataItem would add the two children DataItem elements together in a value by value operation resulting in the values 5.1, 7.2 and 9.3 :
<DataItem ItemType="Function" Function="$0 + $1" Dimensions="3"> <DataItem Dimensions="3"> 1.0 2.0 3.0 </DataItem> <DataItem Dimensions="3"> 4.1 5.2 6.3 </DataItem> </DataItem>
The function description can be arbitrarily complex and contain SIN, COS, TAN, ACOS, ASIN, ATAN, LOG, EXP, ABS, and SQRT. In addition, there are the JOIN() and WHERE() expressions. JOIN can concatenate or interlace arrays while WHERE() can extract values where some condition is true. In the following examples we take advantage of the XPath facility to reference DataItem elements that have been previously specified :
Add the value 10 to every element
<DataItem Name="MyFunction" ItemType="Function" Function="10 + $0"> <DataItem Reference="/Xdmf/DataItem[1]" /> </DataItem>
Multiply two arrays (element by element) and take the absolute value
<DataItem ItemType="Function" Function="ABS($0 * $1)"> <DataItem Reference="/Xdmf/DataItem[1]" /> <DataItem Reference="/Xdmf/DataItem[2]" /> </DataItem>
Select element 5 thru 15 from the first DataItem
<DataItem ItemType="Function" Function="$0[5:15]"> <DataItem Reference="/Xdmf/DataItem[1]" /> </DataItem>
Concatenate two arrays
<DataItem ItemType="Function" Function="JOIN($0 ; $1)"> <DataItem Reference="/Xdmf/DataItem[1]" /> <DataItem Reference="/Xdmf/DataItem[2]" /> </DataItem>
Interlace 3 arrays (Useful for describing vectors from scalar data)
<DataItem ItemType="Function" Function="JOIN($0 , $1, $2)"> <DataItem Reference="/Xdmf/DataItem[1]" /> <DataItem Reference="/Xdmf/DataItem[2]" /> <DataItem Reference="/Xdmf/DataItem[3]" /> </DataItem>
Grid
The DataItem element is used to define the data format portion of XDMF. It is sufficient to specify fairly complex data structures in a portable manner. The data model portion of XDMF begins with the Grid element. A Grid is a container for information related to 2D and 3D points, structured or unstructured connectivity, and assigned values.
The Grid element now has a GridType attribute. Valid GridTypes are :
- Uniform - a homogeneous single grid (i.e. a pile of triangles)
- Collection - an array of Uniform grids all with the same Attributes
- Tree - a hierarchical group
- SubSet - a portion of another Grid
Uniform Grid elements are the simplest type and must contain a Topology and Geometry element. If GridType is Collection, a CollectionType can be specified as either "Spatial" or "Temporal". Just like the DataItem element, Tree and Collection Grid elements contain other Grid elements as children :
<Grid Name="Car Wheel" GridType="Tree"> <Grid Name="Tire" GridType="Uniform"> <Topology ... <Geometry ... </Grid> <Grid Name="Lug Nuts" GridType="Collection"> <Grid Name="Lug Nut 0" GridType="Uniform" <Topology .... <Geometry ... </Grid> <Grid Name="Lug Nut 1" GridType="Uniform" <Topology ... <Geometry ... </Grid> <Grid Name="Lug Nut 2" GridType="Uniform" <Topology ... <Geometry ... </Grid> </Grid> . . .
A SubSet GridType is used to define a portion of another grid or define new attributes on the grid. This allows users to share the geometry and topology of another grid, the attributes from the original grid are not assigned. The Section attribute of a SubSet can be DataItem or All :
<Grid Name="Portion" GridType="Subset" Section="DataItem"> <!-- Select 2 cells from another grid. Which 2 are defined by the DataItem --> <DataItem DataType="Int" Dimensions="2" Format="XML"> 0 2 </DataItem> <Grid Name="Target" Reference="XML"> /Xdmf/Domain/Grid[@Name="Main Grid"] </Grid> <Attribute Name="New Values" Center="Cell"> <DataItem Format="XML" Dimensions="2"> 100 150 </DataItem> </Attribute> </Grid>
Or
<Grid Name="Portion" GridType="Subset" Section="All"> <!-- Select the entire grid and add an attribute --> <Grid Name="Target" Reference="XML"> /Xdmf/Domain/Grid[@Name="Main Grid"] </Grid> <Attribute Name="New Values" Center="Cell"> <DataItem Format="XML" Dimensions="3"> 100 150 200 </DataItem> </Attribute> </Grid>
Topology
The Topology element describes the general organization of the data. This is the part of the computational grid that is invariant with rotation, translation, and scale. For structured grids, the connectivity is implicit. For unstructured grids, if the connectivity differs from the standard, an Order may be specified. Currently, the following Topology cell types are defined :
Linear
- Polyvertex - a group of unconnected points
- Polyline - a group of line segments
- Polygon
- Triangle
- Quadrilateral
- Tetrahedron
- Pyramid
- Wedge
- Hexahedron
Quadratic
- Edge_3 - Quadratic line with 3 nodes
- Tri_6
- Quad_8
- Tet_10
- Pyramid_13
- Wedge_15
- Hex_20
Arbitrary
- Mixed - a mixture of unstructured cells
Structured
- 2DSMesh - Curvilinear
- 2DRectMesh - Axis are perpendicular
- 2DCoRectMesh - Axis are perpendicular and spacing is constant
- 3DSMesh
- 3DRectMesh
- 3DCoRectMesh
There is a NodesPerElement attribute for the cell types where it is not implicit. For example, to define a group of Octagons, set TopologyType="Polygon" and NodesPerElement="8". For structured grid topologies, the connectivity is implicit. For unstructured topologies the Topology element must contain a DataItem that defines the connectivity :
<Topology TopologyType="Quadrilateral" NumberOfElements="2" > <DataItem Format="XML" DataType="Int" Dimensions="2 4"> 0 1 2 3 1 6 7 2 </DataItem> </Topology>
The connectivity defines the indexes into the XYZ geometry that define the cell. In this example, the two quads share an edge defined by the line from node 1 to node 2. A Topology element can define Dimensions or NumberOfElements; this is just added for clarity.
Mixed topologies must define the cell type of every element. If that cell type does not have an implicit number of nodes, that must also be specified. In this example, we define a topology of three cells consisting of a Tet (cell type 6) a Polygon (cell type 3) and a Hex (cell type 9) :
<Topology TopologyType="Mixed" NumberOfElements="3" > <DataItem Format="XML" DataType="Int" Dimensions="20"> 6 0 1 2 7 3 4 4 5 6 7 9 8 9 10 11 12 13 14 15 </DataItem> </Topology>
Notice that the Polygon must define the number of nodes (4) before its connectivity. The cell type numbers are defined in the API documentation.
Geometry
The Geometry element describes the XYZ values of the mesh. The important attribute here is the organization of the points. The default is XYZ; an X,Y, and Z for each point starting at parametric index 0. Possible organizations are :
- XYZ - Interlaced locations
- XY - Z is set to 0.0
- X_Y_Z - X,Y, and Z are separate arrays
- VXVYVZ - Three arrays, one for each axis
- ORIGIN_DXDYDZ - Six Values : Ox,Oy,Oz + Dx,Dy,Dz
- ORIGIN_DXDY - Four Values : Ox,Oy + Dx,Dy
The following Geometry element defines 8 points :
<Geometry GeometryType="XYZ"> <DataItem Format="XML" Dimensions="2 4 3"> 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 1.0 0.0 2.0 1.0 1.0 2.0 0.0 1.0 2.0 </DataItem> </Geometry>
Together with the Grid and Topology element we now have enough to define a full XDMF XML file that defines two quadrilaterals that share an edge (notice not all points are used):
<?xml version="1.0" ?> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []> <Xdmf Version="2.0" xmlns:xi="[http://www.w3.org/2001/XInclude]"> <Domain> <Grid Name="Two Quads"> <Topology TopologyType="Quadrilateral" NumberOfElements="2"> <DataItem Format="XML" DataType="Int" Dimensions="2 4"> 0 1 2 3 1 6 7 2 </DataItem> </Topology> <Geometry GeometryType="XYZ"> <DataItem Format="XML" Dimensions="2 4 3"> 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 1.0 0.0 2.0 1.0 1.0 2.0 0.0 1.0 2.0 </DataItem> </Geometry> </Grid> </Domain> </Xdmf>
It is valid to have DataItem elements to be direct children of the Xdmf or Domain elements. This could be useful if several Grids share the same Geometry but have separate Topology :
<?xml version="1.0" ?> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []> <Xdmf Version="2.0" xmlns:xi="[http://www.w3.org/2001/XInclude]"> <Domain> <DataItem Name="Point Data" Format="XML" Dimensions="2 4 3"> 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 1.0 0.0 2.0 1.0 1.0 2.0 0.0 1.0 2.0 </DataItem> <Grid Name="Two Quads"> <Topology Type="Quadrilateral" NumberOfElements="2" > <DataItem Format="XML" DataType="Int" Dimensions="2 4"> 0 1 2 3 1 6 7 2 </DataItem> </Topology> <Geometry Type="XYZ"> <DataItem Reference="XML"> /Xdmf/Domain/DataItem[@Name="Point Data"] </DataItem> </Geometry> </Grid> </Domain> </Xdmf>
Attribute
The Attribute element defines values associated with the mesh. Currently the supported types of values are :
- Scalar
- Vector
- Tensor - 9 values expected
- Tensor6 - a symmetrical tensor
- Matrix - an arbitrary NxM matrix
These values can be centered on :
- Node
- Edge
- Face
- Cell
- Grid
A Grid centered Attribute might be something like "Material Type" where the value is constant everywhere in the grid. Edge and Face centered values are defined, but do not map well to many visualization systems (ParaView, for example, ignores them at present). Edge and Face values are defined for each Cell in turn, using VTK ordering. The same Face or Edge may be visited multiple times, with duplicate values.
Typically Attributes are assigned on the Node :
<Attribute Name="Node Values" Center="Node"> <DataItem Format="XML" Dimensions="6 4"> 100 200 300 400 500 600 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 </DataItem> </Attribute>
Or assigned to the cell centers :
<Attribute Name="Cell Values" Center="Cell"> <DataItem Format="XML" Dimensions="3"> 3000 2000 1000 </DataItem> </Attribute>
Set
The Set element may be used to define Attributes on a subset of entities of a Grid.
Valid SetTypes are:
- Node
- Edge
- Face
- Cell
Set may have multiple DataItems. The last DataItem always provides the indices of the entity. If SetType is Face or Edge, the First DataItem defines the Cell indices, and subsequent Dataitems define the Cell-local Face or Edge indices. It is therefore possible to define multiple values on Edges or Faces. The following example defines values on Face 0 of Cells 1,2,3 and 4.
<Set Name="Ids" SetType="Face"> <DataItem Format="XML" Dimensions="4" > 1 2 3 4 </DataItem> <DataItem Format="XML" Dimensions="4" > 0 0 0 0 </DataItem> <Attribute Name="Example" Center="Face"> <DataItem Format="XML" Dimensions="4" > 100.0 110.0 100.0 200.0 </DataItem> </Attribute> </Set>
Time
The Time element is a child of the Grid element and specifies the temporal information for the grid. The type of time element is defined by the TimeType attribute of the element. Valid TimeTypes are :
- Single - A single time value for the entire grid
- HyperSlab - Start, Stride, Count
- List - A list of discrete times
- Range - Min, Max
So in the simplest form, specifying a single time :
<Time Value="0.1" />
For a more complex situation, consider a grid with GridType="Collection" which contains a set 100 children grids written every 1usec of simulation time :
<Time TimeType="HyperSlab"> <DataItem Format="XML" NumberType="Float" Dimensions="3"> 0.0 0.000001 100 </DataItem> </Time>
For a collection of grids not written at regular intervals :
<Time TimeType="List"> <DataItem Format="XML" NumberType="Float" Dimensions="7"> 0.0 0.1 0.5 1.0 1.1 10.0 100.5 </DataItem> </Time>
For data which is valid not at a discrete time but within a range :
<Time TimeType="Range"> <DataItem Format="XML" NumberType="Float" Dimensions="2"> 0.0 0.5 </DataItem> </Time>
Information
There is regularly code or system specific information that needs to be stored with the data that does not map to the current data model. There is an Information element. This is intended for application specific information that can be ignored. A good example might be the bounds of a grid for use in visualization. Information elements have a Name and Value attribute. If Value is nonexistent the value is in the CDATA of the element :
<Information Name="XBounds" Value="0.0 10.0"/> <Information Name="Bounds"> 0.0 10.0 100.0 110.0 200.0 210.0 </Information>
Several items can be addressed using the Information element like time, units, descriptions, etc. without polluting the XDMF schema. If some of these get used extensively they may be promoted to XDMF elements in the future.
XML Element (Xdmf ClassName) and Default XML Attributes
- Attribute (XdmfAttribute)
Name (no default) AttributeType Scalar | Vector | Tensor | Tensor6 | Matrix | GlobalID Center Node | Cell | Grid | Face | Edge
- DataItem (XdmfDataItem)
Name (no default) ItemType Uniform | Collection | tree | HyperSlab | coordinates | Function Dimensions (no default) in KJI Order NumberType Float | Int | UInt | Char | UChar Precision 1 | 2 (Int or UInt only) |4 | 8 Format XML | HDF | Binary Endian Native | Big | Little (applicable only to Binary format) Compression Raw|Zlib|BZip2 (applicable only to Binary format and depend on xdmf configuration) Seek 0 (number of bytes to skip, applicable only to Binary format with Raw compression)
- Domain (XdmfDomain)
Name (no default)
- Geometry (XdmfGeometry)
GeometryType XYZ | XY | X_Y_Z | VxVyVz | Origin_DxDyDz | Origin_DxDy
- Grid (XdmfGrid)
Name (no default) GridType Uniform | Collection | Tree | Subset CollectionType Spatial | Temporal (Only Meaningful if GridType="Collection") Section DataItem | All (Only Meaningful if GridType="Subset")
- Information (XdmfInformation)
Name (no default) Value (no default)
- Xdmf (XdmfRoot)
Version Current Version | *
- Topology (XdmfTopology)
Name (no default)
TopologyType Polyvertex | Polyline | Polygon |
Triangle | Quadrilateral | Tetrahedron | Pyramid| Wedge | Hexahedron |
Edge_3 | Triagle_6 | Quadrilateral_8 | Tetrahedron_10 | Pyramid_13 |
Wedge_15 | Hexahedron_20 |
Mixed |
2DSMesh | 2DRectMesh | 2DCoRectMesh |
3DSMesh | 3DRectMesh | 3DCoRectMesh
NodesPerElement (no default) Only Important for Polyvertex, Polygon and Polyline
NumberOfElement (no default)
OR
Dimensions (no default)
Order each cell type has its own default
BaseOffset 0 | #
- Time
TimeType Single | HyperSlab | List | Range
Value (no default - Only valid for TimeType="Single")